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Detecting the onset of bifurcations and their precursors from noisy data
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We study the problem of the detection of noise-induced precursors of periodic motion instabilities in
stochastic dynamical systems. In particular, we concentrate on the period-doubling bifurcation. We have
developed a statistical method to detect the onset of bifurcations and their precursors based on the previously
established topological recurrence technique.

PACS number~s!: 05.40.2a, 05.45.2a, 87.10.1e
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I. INTRODUCTION

Nonlinear dynamical systems are extremely sensitive
external perturbations near instabilities. That is because
influence of noise becomes crucial near bifurcation poin
The notion of bifurcation in stochastic systems is blurred@1#,
so that it is difficult to define unambiguously the preci
point of bifurcation. For extremely weak noise the bifurc
tion analysis can be carried out in terms of an effective
tential @2,3# or by using cumulant analysis@4,5#. Indeed,
noise blurs the whole bifurcation structure of the parame
space of the system and shifts the onset of bifurcation@6,7#.
However, another important effect of noise is that it brin
forth the noisy precursors of bifurcations. Wiesenfeld@8# has
shown that the spectral density of a system observed af
bifurcation point can be visible even before the bifurcati
actually occurs if there is noise present. One is thus abl
observe a warning indication of the bifurcation in the form
its noisy precursor. Recently it has been shown that the n
precursors are most pronounced at an optimal noise leve@9#,
demonstrating therefore an effect which is similar to stoch
tic resonance@10–12#.

Observation of noisy precursors might be of great pra
cal importance as a possible indication of the onset of
instability. In particular, recently noisy precursors have be
used to make a closed-loop monitoring system for detec
instabilities @13#. Prediction of incipient instabilities migh
be especially important for biological systems. Besides p
sible applications in the control of dynamical system
@14,15#, observation of the bifurcation behavior allows o
to draw qualitative conclusions about the structure of
dynamics of the system. However time series of biologi
origin are characterized by nonstationarity and are of
therefore restricted in length. Because they require long
tionary data sets, direct application of measures based on
spectral density estimations can be ineffective and in so
cases even useless for nonstationary or heavily noise
taminated signals. In contrast, statistically based topolog
recurrence methods have recently been shown to effecti
detect the signatures of low-dimensional behaviors in d
sets from nonstationary, even periodically or transien
stimulated, neural systems@16,17#.

In this paper we propose a simple statistical technique
detect dynamical instabilities from the topology of the rec
rences in a Poincare´ map. Our method is based on a univers
PRE 611063-651X/2000/61~5!/4848~6!/$15.00
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structure of this return map in the vicinity of local bifurca
tions of periodic solutions. In particular we concentrate
the period doubling bifurcations that are typical for a wi
variety of dynamical systems. We look for occurrences o
certain pattern in a time series which is a universal signa
for a suspected dynamical instability buried in noise and th
compare the result with a surrogate data set to determine
statistical significance of the result@18#. Therefore, this
method is closely akin to that for detecting unstable perio
orbits ~UPO’s! @19–21# and can be generalized for the dete
tion of precursors of other local bifurcations. This paper
organized as follows. In Sec. II, we briefly discuss the no
precursor of a period-doubling instability, using the e
amples of the logistic map and the Ro¨ssler system. In Sec
III, we introduce the method and present some results o
applications. In Sec. IV, we compare the method with t
traditional spectral analysis. The discussion is presente
Sec. V

II. NOISY PRECURSOR OF THE PERIOD DOUBLING
BIFURCATION

We illustrate the noisy precursor of the period-doubli
bifurcation first using the Ro¨ssler system@22#. With additive
white noise the system is governed by the three-dimensio
stochastic differential equations

ẋ52~y1z!1A2Dj1~ t !, ẏ5x1ay1A2Dj2~ t !,
~1!

ż5b1z~x2c!1A2Dj3~ t !,

wherea, b, andc are the parameters,D is the intensity of the
statistically independent white noisesj i(t). In the absence of
noise (D50), and with the parameter valuesa5b50.2, the
first period-doubling bifurcation occurs atc5c1'2.835. For
c,c1 the power spectrum of the noise-free system cons
of d peaks at a basic frequencyv0 and its harmonics. Be-
yond the bifurcation parameter value,c.c1 the power spec-
trum of the system possesses alsod peaks at subharmonic
of a base frequency,v06v0/2.

With noise switched on, the precursors of period-doubl
become visible even before the bifurcation. In Fig. 1, w
show the power spectra of thex coordinate of the Ro¨ssler
system for different noise intensities. In the absence of no
the spectral density possesses a peak atv0'1.09, which
4848 ©2000 The American Physical Society
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corresponds to the natural frequency of the stable limit cy
The noise-induced precursor appears in the form of bro
band peaks at the subharmonicsv75v07v0/2.

Let us consider the control parameter region preceding
period doubling bifurcation in more detail. For this purpo
we introduce a Poincare´ return map,tn115 f (tn), that is we
consider a sequence of time intervalstn between consecutive
intersections of a phase trajectory with a transversal sur
in the phase space. In neuronal electrophysiology the P
caréreturn map corresponds to the intervals between ac
potentials, or spikes, of the membrane potential~or simply
interspike intervals!. A stable limit cycle corresponds to th
existence of a stable fixed point in the Poincare´ return map.
The stability of a limit cycle is determined by its characte
istic or Floquet multipliers which are the eigenvalues of t
corresponding linearized Poincare´ map @23#. Stable limit
cycles possess multipliers whose absolute values are
than 1. The birth of a limit cycle corresponds to the situat
when one of the multipliers crosses to11 while the period-
doubling bifurcation corresponds to the situation when o
of the multipliers crosses21. In the absence of noise th
power spectrum calculated from the discrete time serie
the return times possesses ad peak atv050 ~or 2p) for the
stable period-1 cycle. For stable cycles of period 2k(k.1)
the power spectrum has peaks at ‘‘subharmonic frequenc
vk5(2m11)p/2k21 (m50,1,2, . . . ).

For parameter values preceding the period doubling bi
cation the real part of the largest~by absolute value! multi-
plier changes from positive to negative and finally reac
the value21 at the point of period doubling. The qualitativ
changes of the dynamics of the Poincare´ return map can be
visualized using Lamerey diagrams@24#, also called the cob-
web construction@23#. These diagrams show geometrica
how a perturbation approaches the fixed point. In Fig. 2
show numerically obtained Lamerey diagrams@24# for the
Poincare´ return map of the Ro¨ssler system for two paramete
values: when the real part of the largest multiplier,r, is
positive~a! and negative~b!. Although in both cases the limi
cycle is stable~as is the corresponding fixed point in th

FIG. 1. Power spectrum of thex coordinate of the Ro¨ssler sys-
tem for c52.5 and different values of noise intensities. The nu
bers near the plots correspond to:D50.0 ~1!, D50.001 ~2!, D
50.01 ~3!.
e.
d-

e

ce
n-
n

ss
n

e

of

s’’

r-

s

e

return map!, the structure of approaches to the fixed point
qualitatively different. In the caser.0 we have a Lamerey
staircase@Fig. 2~a!#, while for the negative multiplier the
return map is represented by the Lamerey spiral@Fig. 2~b!#.
The qualitative change in the behavior of the system in
neighborhood of the stable fixed point occurs when the m
tiplier crosses zero.

Let us linearize the return map near the stable fixed po
Denote the fixed point ast0, and introduce a small deviatio
from it asun5tn2t0. Then for a weak noise the linearize
map can be written as

un115run1jn , ~2!

where jn is a Gaussian noise with the power spectru
Gj(v), andr5d f(t)/dtut5t0

is the multiplier of the fixed

point. We require thaturu,1, e.g., the fixed point is stable
The power spectrumGu(v) of this linear stochastic map ca
be easily calculated@4# providing

-

FIG. 2. Poincare´ return mapstn115 f (tn) of the Rössler system
for different values of the control parameter are shown as Lame
diagrams:~a! c51.0, r.0; ~b! c52.5, r,0.
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4850 PRE 61OMBERG, DOLAN, NEIMAN, AND MOSS
Gu~v!5
Gj~v!

122r cosv1r2
. ~3!

In the absence of noise the power spectrum has inde
d-peak atv050. With noise and for positive values of mu
tipliers the power spectrum~3! has a broad peak at the bas
frequencyv50 ~or v52p). Otherwise, oncer is negative
the peak in the power spectrum is centered atv5p, that is,
noise gives rise to the fact that the power spectrum reflec
structure that is typical for a fixed point of period 2, lon
before the occurrence of the bifurcation point in the app
priate deterministic case. In particular, for the Ro¨ssler system
the largest multiplier crosses zero atc5c051.57, while the
period-doubling bifurcation occurs atc5c1'2.835. The
power spectrum of the Poincare´ return map obtained numer
cally from the stochastic Ro¨ssler system is shown in Fig.
and is in very good agreement with the theoretical estima
of Eq. ~3!. This analysis is valid for the limit of weak noise
The cases of intermediate and large noise have been co
ered in terms of the power spectrum in Ref. 9.

Theoretically, the noisy precursor should appear righ
the transition pointr50. However, according to the theor
of Wiesenfeld@8# the height,h, of the noise-induced peak
and their width,Dv, scale with critical parametere5c12c
as h}e22 and Dv}e. Thus the further we are from th
period doubling bifurcation, the less pronounced is the no
induced peak in the power spectrum. From the point of vi
of the return map, the larger~by absolute value! the multi-
plier, the more turns there are in the Lamerey spiral, a
consequently the higher is the noise-induced peak in
power spectrum. At large noise, however, this peak may
come indistinguishable. Therefore, in experimental situati
for which the dynamics are inherently noisy, for examp
those typical of biology, it is difficult to detect an incipien
instability far from the actual bifurcation if one is using th
power spectrum alone as an indicator.

FIG. 3. Power spectrum calculated from the return map of
Rössler system withc52.5 andD50.01 is shown by gray dots
The solid line represents the analytic estimate from Eq.~3! where
the noise spectrumGj(v) was taken as a constant.
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III. DETECTING PRECURSORS USING TOPOLOGICAL
METHODS

Here we develop a statistical method based on the qu
tative properties of the behavior of the return map shown
Fig. 2. One such property is the slope of the approach
trajectory, which shows a trademark negative value prior t
period doubling bifurcation. This trademark can be detec
by looking for consecutive points approaching the fix
point along a line whose slope is negative. The slope is
termined using a linear regression of the points, and dire
corresponds to the value of the multiplier. Specifically, t
pattern looked for has two criteria:

~i! Three points on the return map fall such that th
perpendicular distances to the 45° line become consecuti
smaller.

~ii ! The three points lie approximately along a line
negative slope.

For a geometrical description of these criteria see Fig
The pattern looked for is a modification of the topologic
recurrence method used to search for unstable periodic o
~see Refs.@19–21#, @16#, and@17#!. Such patterns are calle
encounterswhen they are located in a time series. This p
tern will be found with some probability in any system, ev
purely stochastic systems, and systems with fixed points w
positive multipliers. In the case of systems with negat
multipliers, it should occur with much greater frequency th
one would expect from mere chance. To obtain a statist
measure of the number of encounters with the above m
tioned pattern, the number of encountersN was compared to
the number of encounters found in surrogate data files,Ns .
The surrogate files were created by randomly shuffling
original time series. TakingM different realizations of sur-
rogates to determine an average^Ns& and standard deviation
s, we use the following formula,

e

FIG. 4. The structure of an encounter. There are three po
approaching the fixed point. The points are scattered along a
with negative slope.
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PRE 61 4851DETECTING THE ONSET OF BIFURCATIONS AND . . .
Q5
N2^Ns&

s
, ~4!

whereQ is a measure, in units of standard deviations,
tween the searched for pattern and the surrogate finding
a completely random data file, the number of encoun
found will be a binomially distributed random variable. Th
means that as long as the number of encounters found
average in the surrogates is greater then about 20, the d
bution will be Gaussian. The statisticQ can thus be used to
determine the probability that the data file could have co
from the same distribution as the surrogates. A value oQ
larger than positive 3 therefore corresponds to a chanc
less than 1% that the detected encounters are the resu
pure chance@25#. A large negative value means that the p
tern is suppressed in the data, possibly indicating some o
type of dynamics. With respect to period doubling bifurc
tions, when the multiplier is positive the approach toward
fixed point is favored along a positive slope, and hence
counters with the pattern defined above may be suppres
Typically Q is negative for positive multipliers, and becom
positive for negative multipliers, growing larger as the m
tiplier becomes more negative.

To demonstrate this we applied the analysis to two s
tems, the logistic map and the previously described Ro¨ssler
system. The logistic map is written as:

xn115axn~12xn!1A2Djn , ~5!

wherea is the bifurcation parameter,D is the intensity of the
white noisejn . In the noiseless case,D50, the multiplier
crosses zero fora52 and becomes smaller than21 for a
.3 which is the point where the system bifurcates to a sta
period 2 orbit. The multiplier for this orbit remains positiv
until a'3.235 where it crosses zero and grows towa
negative values untila'3.4986 where the period two orb
becomes unstable and the system again bifurcates. Usin
topological search on the first return map we were able
detect significant positive statisticQ.3.0 well before the
first bifurcation@Fig. 5~a!#.

We can also expand our analysis to period two orbits,
using the second return map, that is looking at every ot
point in the data set, first x1 ,x3 , . . . ,xn21, then
x2 ,x4 , . . . ,xn . Encounters with the period two orbit wil
appear both in the first and second pass as a series of p
converging towards the 45° line. The multiplier associa
with the period two orbit is still given by the slope of th
converging points on the return map, so by applying
same algorithm to the period two return map, we are abl
detect the precursors in the period two region as well@Fig.
5~b!#.

As already discussed, the Ro¨ssler system goes through
bifurcation sequence similar to that of the logistic map. T
first bifurcation occurs atc'2.835, and the second bifurca
tion atc'3.8376. Just as for the logistic map the first retu
map was studied in the period one region and the sec
return map in the period 2 region. TheQ statistic grows as
the multiplier becomes more negative, and once again
comes significantly positive well before the bifurcation o
curs, as shown in Fig. 6.
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As discussed aboveQ will have a large negative value
when the pattern is suppressed as is the case when the
tiplier is positive and the approach is along a positive slop
Furthermore the parameter seems to grow as the multip
becomes more negative, which means there has to be a p
of zero statistic. By plottingu1/Qu versus the bifurcation pa-
rameter, an approximate value for this crossing can be
tained as a sharp peak in the plot, see insets of Figs. 5 an
Not surprisingly these peaks fall very close to the zero cro
ings of the multipliers:a52 anda'3.235 for the logistic
map andc'1.57 andc'3.274 for the Ro¨ssler system.

Although, as is well known@6#, noise shifts bifurcation
points, it should be noted from Figs. 5 and 6 that ev
though the noise amplitude varies by a factor of 10, the s
tistic Q, taken at the 99% confidence level, is virtually une
fected. Therefore, this method is very robust to the influen
of noise.

FIG. 5. Q statistic vs bifurcation parametera for the logistic
map ~a! prior to first bifurcation (a53) ~b! nearing second bifur-
cation (a'3.499). At each value ofa, 50 000 data points were
analyzed using Eq.~4! to calculateQ. Remember that according to
the statistics assumed a value ofQ above 3 is considered a signifi
cant finding. The insets showu1/Qu versusa, which give an indica-
tion of the zero crossings. Note how closely the peak correspond
the theoretical values of the noiseless system.
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IV. COMPARING TOPOLOGICAL METHODS TO POWER
SPECTRAL ANALYSIS

As stated in Sec. II the length of the time series is
limiting factor when using the power spectra to detect p
cursors. The topological method presented is less sensitiv
the length of the data set. Since the above analysis is b
on finding specific events in the data instead of averag
over the whole data set, as the power spectrum method d
it works like a filter on the data reducing the noise by on
taking into account the data that actually fits the pattern.

To show how the method is apt to work with short da
sets, power spectra were calculated for the Ro¨ssler system far
from the bifurcation (c52.3) using data sets of differen
lengths. The length of the data sets were defined by the n
ber of crossings of the Poincare´ section. The longer data se
shows the appearance of precursors, while in shorter
sets these are obscured by the noise in the system as s
in Fig. 7. In contrast, our method is free from this limitatio

FIG. 6. Q statistic for the Ro¨ssler system as function ofc: ~a!
approaching first bifurcation (c'2.835) and~b! approaching the
second bifurcation (c'3.8376). The graph is a running avera
over three points ofc where eachQ value was calculated from
50 000 data points. For a significance level of 99% theQ value has
to surpass 3. The insets show 1/Q versus the bifurcation paramete
notice how again the peaks fall close to the multiplier zero cro
ings of 1.57 and 3.274.
a
-
to
ed
g
es,

m-

ta
wn

on the data set length and yields strongly positive statis
for both time series, that is for 1024 points,Q55.6, and for
32768 points,Q520.1.

The way the statisticQ scales with file length can be
undrestood by looking at how it is calculated@Eq. ~4!#. As-
suming that the system being analyzed really does pos
the type of dynamics we are looking for, the number of e
countersN found in the file should be proportional to th
length of the fileL. Furthermore, we can think of a lon
surrogate file as being several smaller surrogate files pla
end to end. The random variable^Ns& is thus simply the sum
of several independent random variables, so^Ns& ands are
proportional toL andAL respectively. We can therefore con
clude thatQ}AL, which is well supported by the our analy
sis applied to the Ro¨ssler system as shown in Fig. 8.

This is in contrast to the case of detecting a signal in
noisy background using the power spectra, where the sig
to noise ratio varies linearly with file length.

The ability to operate on very short data files is of gre

-

FIG. 7. Power Spectrum of Ro¨ssler system withD50.001 and
c52.3 obtained from~a! a long data series consisting of 32 76
Poincare´ crossings and~b! a short data series of 1024 Poinca´
crossings. Notice that the precursors appear atv06v0/2 in ~a!, but
they cannot be observed in~b!. Both cases show strong statistic
Q520.1 andQ55.6, respectively.
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PRE 61 4853DETECTING THE ONSET OF BIFURCATIONS AND . . .
importance in biophysics research, since long data files
often impossible to obtain. This topological method can a
be very useful for analysis of non-stationary systems.
looking at small intervals over which the system is appro
mately stationary, one could use these methods to determ
when the system is about to undergo a bifurcation. The
pological method is ideally suited to this type of analys

FIG. 8. The dependence ofQ versus the length of the sequen
of the Poincare´ return times for the Ro¨ssler system. The crosse
correspond to the results of our analysis, while the solid line rep
sents the square root law~see text!. The parameters are the same
in the previous figure.
f

s,

I

re
o
y
-
ine
-

,

wheras the power spectra method is significantly limited
the short data files.

V. DISCUSSION

The topological method described in this paper provid
an alternative to power spectral analysis for detecting
onset of dynamical instabilities. The ability of this method
operate on very short and noisy data files creates the op
tunity to apply the detection of noisy precursors to syste
that could not previously be analyzed. An example of wh
this method could open up new doors is in experimen
biology, in particular in the electrophysiology of neural sy
tems. These systems are invariably noisy, and therefore
sets from them are often severely limited in length due
nonstationarity. Another possibility is to apply the method
nonstationary systems where the data can be broken d
into smaller segments with almost stationary dynamics.
example is the possibility to predict the tonic-to-bursting
furcations in neural firing patterns of various sensory neu
systems before they actually occur.

The computational simplicity of our method also prese
interesting opportunities for real time analysis. This could
useful in the control of dynamical systems where one wa
to predict an instability before it happens.
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