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Detecting the onset of bifurcations and their precursors from noisy data
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We study the problem of the detection of noise-induced precursors of periodic motion instabilities in
stochastic dynamical systems. In particular, we concentrate on the period-doubling bifurcation. We have
developed a statistical method to detect the onset of bifurcations and their precursors based on the previously
established topological recurrence technique.

PACS numbegps): 05.40—a, 05.45-a, 87.10+e

[. INTRODUCTION structure of this return map in the vicinity of local bifurca-
Nonlinear dynamical systems are extremely sensitive ttions of periodic.solut_ions. I.n particular we (':oncentrate. on
) . i : Fhe period doubling bifurcations that are typical for a wide
gxternal perturpatlons near |nstapllltles. Thf':\t is b'ecausg tr\(;ariety of dynamical systems. We look for occurrences of a
influence of noise becomes crucial near bifurcation pointScertain pattern in a time series which is a universal signature
The notion of bifurcation in stochastic systems is blufiell o 5 suspected dynamical instability buried in noise and then
so that it is difficult to define unambiguously the precisecompare the result with a surrogate data set to determine the
point of bifurcation. For extremely weak noise the bifurca- statistical significance of the resuft.8]. Therefore, this
tion analysis can be carried out in terms of an effective pomethod is closely akin to that for detecting unstable periodic
tential [2,3] or by using cumulant analysigt,5]. Indeed, orbits (UPO’s) [19—21 and can be generalized for the detec-
noise blurs the whole bifurcation structure of the parametetion of precursors of other local bifurcations. This paper is
space of the system and shifts the onset of bifurcdtton. organized as follows. In Sec. I, we briefly discuss the noisy
However, another important effect of noise is that it bringsprecursor of a period-doubling instability, using the ex-
forth the noisy precursors of bifurcations. Wiesenf@ilhas  amples of the logistic map and the $&ter system. In Sec.
shown that the spectral density of a system observed after I, we introduce the method and present some results of its
bifurcation point can be visible even before the bifurcationapplications. In Sec. IV, we compare the method with the
actually occurs if there is noise present. One is thus able tifaditional spectral analysis. The discussion is presented in
observe a warning indication of the bifurcation in the form of Sec. V
its noisy precursor. Recently it has been shown that the noisy
precursors are most pronounced at an optimal noise [6Yel Il. NOISY PRECURSOR OF THE PERIOD DOUBLING
demonstrating therefore an effect which is similar to stochas- BIFURCATION
tic resonanc¢10-17.

Observation of noisy precursors might be of great practi- . S . ) e
cal importance as a possible indication of the onset of afpifurcation first using the Rssler systeni22]. With additive

instability. In particular, recently noisy precursors have beeﬁ"’hlte noise Fhe system is gqverned by the three-dimensional

used to make a closed-loop monitoring system for detectin§'ochastic differential equations

instabilities[13]. Prediction of incipient instabilities might . .

be especially important for biological systems. Besides pos- X=~(Y+2)+ V2D&(1),  y=x+ay+\2Déy(b),

sible applications in the control of dynamical systems ) 1)

[14,15, observation of the bifurcation behavior allows one Z=b+z(x—c)+ 2D &(t),

to draw qualitative conclusions about the structure of the

dynamics of the system. However time series of biologicaWherea, b, andc are the parameterB) is the intensity of the

origin are characterized by nonstationarity and are ofterstatistically independent white noisggt). In the absence of

therefore restricted in length. Because they require long staroise ©=0), and with the parameter valuas-b=0.2, the

tionary data sets, direct application of measures based on tfigst period-doubling bifurcation occurs at=c,~2.835. For

spectral density estimations can be ineffective and in some<c; the power spectrum of the noise-free system consists

cases even useless for nonstationary or heavily noise coef 6 peaks at a basic frequeney, and its harmonics. Be-

taminated signals. In contrast, statistically based topologicarond the bifurcation parameter value; ¢, the power spec-

recurrence methods have recently been shown to effectiveliyum of the system possesses afspeaks at subharmonics

detect the signatures of low-dimensional behaviors in dataf a base frequencyyy* wq/2.

sets from nonstationary, even periodically or transiently With noise switched on, the precursors of period-doubling

stimulated, neural systenj$6,17]. become visible even before the bifurcation. In Fig. 1, we
In this paper we propose a simple statistical technique tshow the power spectra of thecoordinate of the Resler

detect dynamical instabilities from the topology of the recur-system for different noise intensities. In the absence of noise

rences in a Poincamaap. Our method is based on a universalthe spectral density possesses a peak@t1.09, which

We illustrate the noisy precursor of the period-doubling
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FIG. 1. Power spectrum of thecoordinate of the Resler sys-
tem forc=2.5 and different values of noise intensities. The num- (b) -
bers near the plots correspond ©=0.0 (1), D=0.001(2), D -
=0.01(3). 5.76 ¢ 1

corresponds to the natural frequency of the stable limit cycle -~

The noise-induced precursor appears in the form of broac e

band peaks at the subharmonics = wg+ wg/2. 3
Let us consider the control parameter region preceding the <

period doubling bifurcation in more detail. For this purpose .

we introduce a Poincameturn map,r,. = f(r,), that is we g

consider a sequence of time intervalsbetween consecutive » 4

intersections of a phase trajectory with a transversal surfac -

in the phase space. In neuronal electrophysiology the Poir -

carereturn map corresponds to the intervals between actio .

potentials, or spikes, of the membrane potenttal simply 5.73 &7 ‘

interspike intervals A stable limit cycle corresponds to the 5.73 5.76

existence of a stable fixed point in the Poincestirn map. T,

The stability of a limit cycle is determined by its character- o, .

istic or Floquet multipliers which are the eigenvalues of the ~F!G- 2. Poincareeturn mapsy, .., = f(,) of the Rasler system

corresponding linearized Poincareap [23]. Stable limit fqr different values of the control parameter are shown as Lamerey

cycles possess multipliers whose absolute values are ledidgramsia ¢=1.0, p>0;(b) c=2.5, p<0.

than 1. The birth of a limit cycle corresponds to the situation

when one of the multipliers crosses ol while the period- return map, the structure of approaches to the fixed point is

doubling bifurcation corresponds to the situation when onejualitatively different. In the case>0 we have a Lamerey

of the multipliers crosses-1. In the absence of noise the staircase[Fig. 2(a)], while for the negative multiplier the

power spectrum calculated from the discrete time series afeturn map is represented by the Lamerey spiFéa. 2(b)].

the return times possesses aeak atwy=0 (or 27) for the  The qualitative change in the behavior of the system in the

stable period-1 cycle. For stable cycles of peridgk2-1)  neighborhood of the stable fixed point occurs when the mul-

the power spectrum has peaks at “subharmonic frequenciestiplier crosses zero.

+1

o=02m+1)m/25t (m=0,1,2...). Let us linearize the return map near the stable fixed point.
For parameter values preceding the period doubling bifurDenote the fixed point ag, and introduce a small deviation
cation the real part of the large@ty absolute valuemulti-  from it as 8,=7,— 7. Then for a weak noise the linearized

plier changes from positive to negative and finally reachesnap can be written as

the value—1 at the point of period doubling. The qualitative

changes of the dynamics of the Poincasturn map can be

visualized using Lamerey diagrarf4], also called the cob- On+1=pOnt &n, (2
web constructiorf23]. These diagrams show geometrically

how a perturbation approaches the fixed point. In Fig. 2 we ) ] i )

show numerically obtained Lamerey diagrafias] for the ~ Where &, is a Gaussian noise with the power spectrum
Poincafereturn map of the Resler system for two parameter G¢(®), andp=df(7)/d7|,-, is the multiplier of the fixed
values: when the real part of the largest multiplipr,is  point. We require thalp| <1, e.g., the fixed point is stable.
positive(a) and negativéb). Although in both cases the limit The power spectrur® 4( ) of this linear stochastic map can
cycle is stable(as is the corresponding fixed point in the be easily calculatef4] providing
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FIG. 3. Power spectrum calculated from the return map of the
Rossler system wittc=2.5 andD=0.01 is shown by gray dots.
The solid line represents the analytic estimate from @Bgwhere
the noise spectrur(w) was taken as a constant.

Xn

FIG. 4. The structure of an encounter. There are three points
G w) approaching the fixed point. The points are scattered along a line
Gy(w)= g—‘ €©)] with negative slope.
4 2
1-2pcosw+p
I1l. DETECTING PRECURSORS USING TOPOLOGICAL

. . METHODS
In the absence of noise the power spectrum has indeed a

o-peak atwo=0. With noise and for positive values of mul-  Here we develop a statistical method based on the quali-
tipliers the power spectruit8) has a broad peak at the basic tative properties of the behavior of the return map shown in
frequencyw=0 (or w=27). Otherwise, once is negative  Fig. 2. One such property is the slope of the approaching
the peak in the power spectrum is centered at, that is, trajectory, which shows a trademark negative value prior to a
noise gives rise to the fact that the power spectrum reflects jperiod doubling bifurcation. This trademark can be detected
structure that is typical for a fixed point of period 2, long by looking for consecutive points approaching the fixed
before the occurrence of the bifurcation point in the appro{oint along a line whose slope is negative. The slope is de-
priate deterministic case. In particular, for thesRler system termined using a linear regression of the points, and directly
the largest multiplier crosses zeroat c,=1.57, while the  corresponds to the value of the multiplier. Specifically, the
period-doubling bifurcation occurs at=c,~2.835. The pattern looked for has two criteria:
power spectrum of the Poincareturn map obtained numeri- (i) Three points on the return map fall such that their
cally from the stochastic Rwsler system is shown in Fig. 3 perpendicular distances to the 45° line become consecutively
and is in very good agreement with the theoretical estimatiorsmaller.
of Eqg. (3). This analysis is valid for the limit of weak noise.  (ii) The three points lie approximately along a line of
The cases of intermediate and large noise have been considegative slope.
ered in terms of the power spectrum in Ref. 9. For a geometrical description of these criteria see Fig. 4.
Theoretically, the noisy precursor should appear right affhe pattern looked for is a modification of the topological
the transition poinpp=0. However, according to the theory recurrence method used to search for unstable periodic orbits
of Wiesenfeld[8] the height,h, of the noise-induced peaks (see Refs[19-21], [16], and[17]). Such patterns are called
and their width,Aw, scale with critical parameter=c,—c encountersvhen they are located in a time series. This pat-
ashxe ? and Awxe. Thus the further we are from the tern will be found with some probability in any system, even
period doubling bifurcation, the less pronounced is the noisepurely stochastic systems, and systems with fixed points with
induced peak in the power spectrum. From the point of viewpositive multipliers. In the case of systems with negative
of the return map, the largéby absolute valuethe multi-  multipliers, it should occur with much greater frequency then
plier, the more turns there are in the Lamerey spiral, andne would expect from mere chance. To obtain a statistical
consequently the higher is the noise-induced peak in theneasure of the number of encounters with the above men-
power spectrum. At large noise, however, this peak may betioned pattern, the number of encountirsvas compared to
come indistinguishable. Therefore, in experimental situationshe number of encounters found in surrogate data filgs,
for which the dynamics are inherently noisy, for example, The surrogate files were created by randomly shuffling the
those typical of biology, it is difficult to detect an incipient original time series. Taking/ different realizations of sur-
instability far from the actual bifurcation if one is using the rogates to determine an averadé;) and standard deviation
power spectrum alone as an indicator. o, we use the following formula,
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where Q is a measure, in units of standard deviations, be:
tween the searched for pattern and the surrogate findings.
a completely random data file, the number of encounter:
found will be a binomially distributed random variable. This
means that as long as the number of encounters found ¢
average in the surrogates is greater then about 20, the dist
bution will be Gaussian. The statistig can thus be used to
determine the probability that the data file could have comg
from the same distribution as the surrogates. A valu&of
larger than positive 3 therefore corresponds to a chance «
less than 1% that the detected encounters are the result
pure chanc¢25]. A large negative value means that the pat-
tern is suppressed in the data, possibly indicating some othi
type of dynamics. With respect to period doubling bifurca-
tions, when the multiplier is positive the approach toward the ' ' : : ‘
. o o 2.0 . ;
fixed point is favored along a positive slope, and hence en 300 -
counters with the pattern defined above may be suppresse 15
Typically Q is negative for positive multipliers, and becomes
positive for negative multipliers, growing larger as the mul-
tiplier becomes more negative. 05 -
To demonstrate this we applied the analysis to two sys 444
tems, the logistic map and the previously describeddRs o
system. The logistic map is written as:

o

200 - 1.0 |

At

0.0 L ] L
3.0 31 32 33 34 35

0.0
Xnt1=aX%(1—X,)+v2D¢&,, 5
100 t =1
wherea is the bifurcation parameteD is the intensity of the . ng_‘«,
white noise¢,,. In the noiseless cas® =0, the multiplier —
Crosses zero f0a=.2 and becomes smal[er thanl for a 200 T 260 300 310 320 330 340 350
>3 which is the point where the system bifurcates to a stabli a

period 2 orbit. The multiplier for this orbit remains positive
until a~3.235 where it crosses zero and grows towards FIG. 5. Q statistic vs bifurcation parameter for the logistic
negative values untid~3.4986 where the period two orbit MaP (a) prior to first bifurcation &=3) (b) nearing second bifur-

becomes unstable and the system again bifurcates. Using tfalion @~3.499). At each value o, 50000 data points were

topological search on the first return map we were able t&nalyzed using Eq4) to calculateQ. Remember that according to

detect significant positive statistiQ>3.0 well before the g:;ts ;ﬁtfffﬂcs?ﬁiﬂi‘i‘sasﬁiwgwsvfsj 'strfigﬂs'?veée:n?nzig_f"
first bifurcation[Fig. 5a)]. g ! 9

. . . tion of the zero crossings. Note how closely the peak corresponds to
We can also expand our analysis to period two orbits, b d ynep b

. . ) Xhe theoretical values of the noiseless system.
using the second return map, that is looking at every other

point in the data set, firstx;,Xs, ... X,_1, then . _ .
X5,X4, ... X,. Encounters with the period two orbit will ~ As discussed abov@ will have a large negative value
appear both in the first and second pass as a series of poitien the pattern is suppressed as is the case when the mul-
converging towards the 45° line. The multiplier associatediplier is positive and the approach is along a positive slope.
with the period two orbit is still given by the slope of the Furthermore the parameter seems to grow as the multiplier
converging points on the return map, so by applying thebecomes more negative, which means there has to be a point
same algorithm to the period two return map, we are able tof zero statistic. By plotting1/Q| versus the bifurcation pa-
detect the precursors in the period two region as Wel).  rameter, an approximate value for this crossing can be ob-
5(b)]. tained as a sharp peak in the plot, see insets of Figs. 5 and 6.
As already discussed, the &der system goes through a Not surprisingly these peaks fall very close to the zero cross-
bifurcation sequence similar to that of the logistic map. Theings of the multipliersa=2 anda~3.235 for the logistic
first bifurcation occurs at~2.835, and the second bifurca- map andc~1.57 andc~3.274 for the Resler system.
tion atc~3.8376. Just as for the logistic map the first return  Although, as is well knowr]6], noise shifts bifurcation
map was studied in the period one region and the seconpboints, it should be noted from Figs. 5 and 6 that even
return map in the period 2 region. Tl statistic grows as though the noise amplitude varies by a factor of 10, the sta-
the multiplier becomes more negative, and once again beistic Q, taken at the 99% confidence level, is virtually unef-
comes significantly positive well before the bifurcation oc- fected. Therefore, this method is very robust to the influence
curs, as shown in Fig. 6. of noise.
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FIG. 6. Q statistic for the Resler system as function af (a) )
approaching first bifurcationci2.835) and(b) approaching the FIG. 7. Power Spectrum of Reler system wittD =0.001 and
second bifurcation ¢~3.8376). The graph is a running average ¢=2.3 obtained from(@ a long data series consisting of 32768
over three points ot where eackQ value was calculated from POinCﬁreCfOSSingS anc(b) a short data series of 1024 Poincare
50 000 data points. For a significance level of 99% Ghealue has ~ crossings. Notice that the precursors appeasqat wo/2 in (a), but
to surpass 3. The insets shovQlversus the bifurcation parameter, they cannot be observed {b). Both cases show strong statistics,
notice how again the peaks fall close to the multiplier zero crossQ=20.1 andQ=5.6, respectively.
ings of 1.57 and 3.274.

on the data set length and yields strongly positive statistics
for both time series, that is for 1024 poin€@@=5.6, and for
32768 pointsQ=20.1.

As stated in Sec. Il the length of the time series is a The way the statisti@Q scales with file length can be
limiting factor when using the power spectra to detect prelindrestood by looking at how it is calculatfq. (4)]. As-
cursors. The topological method presented is less sensitive f8iMing that the system being analyzed really does possess
the length of the data set. Since the above analysis is baséde type of dynamics we are looking for, the number of en-
on finding specific events in the data instead of averagingountersN found in the file should be proportional to the
over the whole data set, as the power spectrum method doegngth of the fileL. Furthermore, we can think of a long
it works like a filter on the data reducing the noise by onlysurrogate file as being several smaller surrogate files placed
taking into account the data that actually fits the pattern. €nd to end. The random varialflds) is thus simply the sum

To show how the method is apt to work with short dataof several independent random variables{Ng) and o are
sets, power spectra were calculated for thesRer system far  proportional toL and JE respectively. We can therefore con-
from the bifurcation ¢=2.3) using data sets of different clude thatQ= /L, which is well supported by the our analy-
lengths. The length of the data sets were defined by the nunsis applied to the Rssler system as shown in Fig. 8.
ber of crossings of the Poincasection. The longer data set ~ This is in contrast to the case of detecting a signal in a
shows the appearance of precursors, while in shorter datzoisy background using the power spectra, where the signal
sets these are obscured by the noise in the system as shotenoise ratio varies linearly with file length.
in Fig. 7. In contrast, our method is free from this limitation ~ The ability to operate on very short data files is of great

IV. COMPARING TOPOLOGICAL METHODS TO POWER
SPECTRAL ANALYSIS
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wheras the power spectra method is significantly limited by
the short data files.

V. DISCUSSION

The topological method described in this paper provides
an alternative to power spectral analysis for detecting the
. onset of dynamical instabilities. The ability of this method to
operate on very short and noisy data files creates the oppor-
tunity to apply the detection of noisy precursors to systems
that could not previously be analyzed. An example of where
this method could open up new doors is in experimental
Ny biology, in particular in the electrophysiology of neural sys-
tems. These systems are invariably noisy, and therefore data
] sets from them are often severely limited in length due to
nonstationarity. Another possibility is to apply the method to

4 6 7 8 nonstationary systems where the data can be broken down
file length x 10* into smaller segments with almost stationary dynamics. An

example is the possibility to predict the tonic-to-bursting bi-

FIG. 8. The dependence @ versus the length of the sequence g, cations in neural firing patterns of various sensory neural
of the Poincarereturn times for the Resler system. The crosses systems before they actually occur.

correspond to the results of our analysis, while the solid line repre- The computational simplicity of our method also presents
§ents the square root laigee text. The parameters are the same as'interesting opportunities for real time analysis. This could be
in the previous figure.

useful in the control of dynamical systems where one wants

importance in biophysics research, since long data files ar® predict an instability before it happens.

often impossible to obtaln._Thls topologlt_:al method can also ACKNOWLEDGMENTS

be very useful for analysis of non-stationary systems. By

looking at small intervals over which the system is approxi- We are grateful to M. L. Spano, H. A. Braun, and M.
mately stationary, one could use these methods to determirtduber for stimulating discussions and essential insights. This
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